Dmitry67 wrote:
1 Пожалуйста. Аксиоматика Пеано. В нет нет понятия 'множества'.
Поэтому, когда Вы говорите 'последовательность формул', например, то Вы уже выходите за рамки аксиоматики Пеано, а находитесь в области AP+наивная теория множеств
The Peano theory does not have the notion of finite sequence. That's precisely why Godel used his Beta function to translate any finite sequence of natural numbers into a natural number. In his proof however he did not use any axioms of a set theory, naive or otherwise, because he encoded everything he needed for the proof with natural numbers and worked within the Peano theory, that was the whole point. It's unclear why you think that representing a finite sequence with a natural number is somehow inadequate.
Dmitry67 wrote:2 Может быть. Во всяком случе (A or not A) в интуиционисткой логике не доказуемо для любого A
How's that relevant to the proof by contradiction ?
Dmitry67 wrote:3
Я переформулирую вопрос
Например, можете ли Вы произвонсить фразу 'возьмем любое не важно что', рассуждая о теории множеств БЕЗ аксиомы выбора AC ?
How 's the AC relevant to the 1st GT proof ?
Dmitry67 wrote:4
Вот Вы и подтвердили мои слова
Поймите, я не отрицаю того, что предикат Con(#X) работает также как |- X
потому что Гедель так замечательно придумал. Построил. То есть по построению
Но Вы никак не хотите признать что Con(#X) и |- X все таки разные вещи. Одно отображено в другое Геделизацией, но сама Геделизация есть handwaving, да, она формальна, но описывается на метаязыке.
Of course, Con(PA) and |-X mean different things. You probably wanted to say that you are not convinced that the Godel provability predicate formalizes the informal notion of proof, or that a finite sequence cannot be meaningfully represented by a natural number, etc. It's a strange point of view, but apparently there is nothing anyone can do to change your mind. So, if you are serious about your opinions, the GTs simply should not exist for you because you do not accept their proofs. Further, you should also reject such notions as the natural numbers, the set and the idea of set membership because none of the above is formalizable. The idea of a function represented as a set of pairs should also be meaningless to you at least for two reasons: first, you might not be satisfied with the informal notion of function represented as a set of pairs, second, the very word 'set' might be meaningless to you as well.
Dmitry67 wrote:Признав что "The large chunk of the proof is exactly about how one can map formulas and proofs to the natural numbers" Вы фактически признали, что handvawing есть неотъемлимая часть доказательства
No, I did not. 'Handwaving' usually means that some [not so] important steps in a proof are missing and replaced with more or less informal persuasion. What's missing in the proof ? If by 'handwaving' you mean that the sequence/provability representation does not convince you, see above.
Dmitry67 wrote:5
Формальное доказательство содержит только номера аксиом и правил вывода
Для его верификации не требуется абсолютно никаких "some intuitive ideas"
The proof was intended for human consumption and in addition to a fully rigorous exposition contains informal explanations. What you are looking for has been done by Shankar in 1986 (the GT proof by a computer theorem prover). However, it'll hardly convince you since apparently you have a problem with the provabilty/syntax representation rather than the proof itself.